NATEGLINIDE- nateglinide tablet, coated American Health Packaging ----- | These highlights do not include all the information needed to use NATEGLINIDE TABLETS safely and effectively. See full prescribing information for NATEGLINIDE TABLETS. NATEGLINIDE tablets, for oral use Initial U.S. Approval: 2000 | |--| | Nateglinide is a glinide indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 | | diabetes mellitus. (1) | | <u>Limitation of use</u> : Not for treating type 1 diabetes mellitus or diabetes ketoacidosis (1) | | DOSAGE AND ADMINISTRATION | | Recommended dose is 120 mg three times daily. In patients who are near glycemic goal when treatment is initiated, 60 mg three times daily may be administered. (2) | | • Administer 1 to 30 minutes before meals. (2) | | • If a meal is skipped, skip the scheduled dose to reduce the risk of hypoglycemia. (2, 5.1) | | DOSAGE FORMS AND STRENGTHS | | Tablets: 60 mg and 120 mg (3) | | CONTRAINDICATIONS | | History of hypersensitivity to nateglinide inactive ingredients (4) | | WARNINGS AND PRECAUTIONS | | ADVERSE REACTIONS | | • Common adverse reactions associated with nateglinide (3% or greater incidence) were upper respiratory tract infection, back pain, flu symptoms, dizziness, arthropathy, diarrhea. (6.1) | | To report SUSPECTED ADVERSE REACTIONS, contact Par Pharmaceutical at 1-800-828-9393 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch | | Drugs That May Increase the Potential for Hypoglycemia: Nateglinide dose reductions and increased frequency of glucose monitoring may be required when coadministered (7) | | • Drugs That May Increase the Potential for Hyperglycemia: Nateglinide dose increases and increased frequency of glucose monitoring may be required when coadministered (7) | | • Drugs That May Blunt Signs and Symptoms of Hypoglycemia: Increased frequency of glucose monitoring may be required when coadministered (7) | | USE IN SPECIFIC POPULATIONS | | • Nursing Mothers: Discontinue nateglinide or nursing (8.3) | **Revised: 1/2019** FULL PRESCRIBING INFORMATION: CONTENTS* 1 INDICATIONS AND USAGE 2 DOSAGE AND ADMINISTRATION 3 DOSAGE FORMS AND STRENGTHS See 17 for PATIENT COUNSELING INFORMATION. #### 4 CONTRAINDICATIONS #### **5 WARNINGS AND PRECAUTIONS** - 5.1 Hypoglycemia - 5.2 Macrovascular Outcomes #### **6 ADVERSE REACTIONS** - 6.1 Clinical Trials Experience - 6.2 Postmarketing Experience #### 7 DRUG INTERACTIONS #### **8 USE IN SPECIFIC POPULATIONS** - 8.1 Pregnancy - 8.3 Nursing Mothers - 8.4 Pediatric Use - 8.5 Geriatric Use - 8.6 Renal Impairment - 8.7 Hepatic Impairment #### 10 OVERDOSAGE #### 11 DESCRIPTION #### 12 CLINICAL PHARMACOLOGY - 12.1 Mechanism of Action - 12.2 Pharmacodynamics - 12.3 Pharmacokinetics #### 13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility #### 14 CLINICAL STUDIES - 14.1 Monotherapy - 14.2 Monotherapy Compared to Glyburide - 14.3 Monotherapy and In Combination With Metformin - 14.4 Add-On Combination Therapy With Rosiglitazone - 14.5 Add-On Combination Therapy With Glyburide #### 16 HOW SUPPLIED #### 17 PATIENT COUNSELING INFORMATION * Sections or subsections omitted from the full prescribing information are not listed. #### **FULL PRESCRIBING INFORMATION** #### 1 INDICATIONS AND USAGE Nateglinide is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. ## **Limitations of Use:** Nateglinide should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis. #### 2 DOSAGE AND ADMINISTRATION The recommended dose of nateglinide is 120 mg orally three times daily before meals. The recommended dose of nateglinide is 60 mg orally three times daily before meals in patients who are near glycemic goal when treatment is initiated. Instruct patients to take nateglinide 1 to 30 minutes before meals. In patients who skip meals, instruct patients to skip the scheduled dose of nateglinide to reduce the risk of hypoglycemia [see Warnings and Precautions (5.1)]. #### 3 DOSAGE FORMS AND STRENGTHS - 60 mg tablets: Pink color coated, round biconvex, beveled edge tablet debossed with "P 984" on one side and plain on the other side - 120 mg tablets: Orange color coated, oval shaped biconvex, tablet debossed with "P 985" on one side and plain on the other side #### 4 CONTRAINDICATIONS Nateglinide tablets are contraindicated in patients with a history of hypersensitivity to nateglinide or its active ingredients. #### **5 WARNINGS AND PRECAUTIONS** ## 5.1 Hypoglycemia All glinides, including nateglinide, can cause hypoglycemia [see Adverse Reactions (6.1)]. Severe hypoglycemia can cause seizures, may be life-threatening, or cause death. Hypoglycemia can impair concentration ability and reaction time; this may place an individual and others at risk in situations where these abilities are important (e.g., driving or operating other machinery). Hypoglycemia can happen suddenly and symptoms may differ in each individual and change over time in the same individual. Symptomatic awareness of hypoglycemia may be less pronounced in patients with longstanding diabetes, in patients with diabetic neuropathy (nerve disease), in patients using medications that block the sympathetic nervous system (e.g., beta-blockers) [see Drug Interactions (7)], or in patients who experience recurrent hypoglycemia. Factors which may increase the risk of hypoglycemia include changes in meal pattern (e.g., macronutrient content), changes in level of physical activity, changes to coadministered medication [see Drug Interactions (7)], and concomitant use with other antidiabetic agents. Patients with renal or hepatic impairment may be at higher risk of hypoglycemia [see Use in Specific Populations (8.6, 8.7)], Clinical Pharmacology (12.3)]. Patients should take nateglinide before meals and be instructed to skip the dose of nateglinide if a meal is skipped [see Dosage and Administration (2)]. Patients and caregivers must be educated to recognize and manage hypoglycemia. Self-monitoring of blood glucose plays an essential role in the prevention and management of hypoglycemia. In patients at higher risk for hypoglycemia and patients who have reduced symptomatic awareness of hypoglycemia, increased frequency of blood glucose monitoring is recommended. #### 5.2 Macrovas cular Outcomes There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with nateglinide. #### **6 ADVERSE REACTIONS** The following serious adverse reaction is also described elsewhere in the labeling: Hypoglycemia [see Warnings and Precautions (5.1)] # **6.1 Clinical Trials Experience** Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. In clinical trials, approximately 2,600 patients with type 2 diabetes mellitus were treated with nateglinide. Of these, approximately 1,335 patients were treated for 6 months or longer and approximately 190 patients for one year or longer. **Table 1** shows the most common adverse reactions associated with nateglinide. Table 1. Adverse Reactions other than Hypoglycemia (%) occurring Greater than or Equal to 2% in Nateglinide-Treated Patients from Pool of 12 to 64 week Placebo Controlled Trials | | Placebo
N=458 | Nateglinide
N=1441 | |-----------------------------|------------------|-----------------------| | <u>Preferred Term</u> | | | | Upper Respiratory Infection | 8.1 | 10.5 | | Back Pain | 3.7 | 4.0 | | Flu Symptoms | 2.6 | 3.6 | | Dizziness | 2.2 | 3.6 | | Arthropathy | 2.2 | 3.3 | | Diarrhea | 3.1 | 3.2 | | Accidental Trauma | 1.7 | 2.9 | | Bronchitis | 2.6 | 2.7 | | Coughing | 2.2 | 2.4 | # **Hypoglycemia** Episodes of severe hypoglycemia (plasma glucose less than 36 mg/dL) were reported in two patients treated with nateglinide. Non-severe hypoglycemia occurred in 2.4 % of nateglinide treated patients and 0.4 % of placebo treated patients [see Warnings and Precautions (5.1)]. #### Weight Gain Patients treated with nateglinide had statistically significant mean increases in weight compared to placebo. In clinical trials, the mean weight increases with nateglinide 60 mg (3 times daily) and nateglinide 120 mg (3 times daily) compared to placebo were 1.0 kg and 1.6 kg respectively. #### Laboratory Test *Increases in Uric Acid*: There were increases in mean uric acid levels for patients treated with nateglinide alone, nateglinide in combination with metformin, metformin alone, and glyburide alone. The respective differences from placebo were 0.29 mg/dL, 0.45 mg/dL, 0.28 mg/dL, and 0.19 mg/dL. # 6.2 Postmarketing Experience The following adverse reactions have been identified during post-approval use of nateglinide. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. - *Hypersensitivity reactions:* Rash, itching, and urticaria - *Hepatobiliary Disorders:* Jaundice, cholestatic hepatitis, and elevated liver enzymes #### 7 DRUG INTERACTIONS **Table 2** includes a list of drugs with clinically important drug interactions when concomitantly administered or withdrawn with nateglinide and instructions for managing or preventing them. # Table 2. Clinically Significant Drug Interactions with Nateglinide Drugs That May Increase the Blood-Glucose-Lowering Effect of Nateglinide and Susceptibility to Hypoglycemia Drugs: Nonsteroidal anti-inflammatory drugs (NSAIDs), salicylates, monoamine oxidase inhibitors, non-selective beta-adrenergic-blocking agents, anabolic hormones (e.g. methandrostenolone), guanethidine, gymnema sylvestre, glucomannan, thioctic acid, and inhibitors of CYP2C9 (e.g. amiodarone, fluconazole, voriconazole, sulfinpyrazone), or in patients known to be poor metabolizers of CYP2C9 substrates, alcohol. *Intervention*: Dose reductions and increased frequency of glucose monitoring may be required when nateglinide is coadministered with these drugs. # Drugs and Herbals That May Reduce the Blood-Glucose-Lowering Effect of Nateglinide and Increase Susceptibility to Hyperglycemia *Drugs:* Thiazides, corticosteroids, thyroid products, sympathomimetics, somatropin, somatostatin analogues (e.g. lanreotide, octreotide), and CYP inducers (e.g. rifampin, phenytoin and St John's Wort). *Intervention:* Dose increases and increased frequency of glucose monitoring may be required when nateglinide is coadministered with these drugs. ## Drugs That May Blunt Signs and Symptoms of Hypoglycemia *Drugs:* beta-blockers, clonidine, guanethidine, and reserpine *Intervention:* Increased frequency of glucose monitoring may be required when nateglinide is coadministered with these drugs. #### **8 USE IN SPECIFIC POPULATIONS** #### 8.1 Pregnancy Pregnancy Category C There are no adequate and well-controlled studies of nateglinide in pregnant women. It is unknown whether nateglinide can cause fetal harm when administered to a pregnant woman. Nateglinide should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. In the rabbit, embryonic development was adversely affected and the incidence of gall bladder agenesis or small gallbladder was increased at a dose of 500 mg/kg (approximately 27 times the human therapeutic exposure of 120 mg three times daily, based on body surface area). Nateglinide was not teratogenic in rats at doses up to 1,000 mg/kg (approximately 27 times the human therapeutic exposure based on body surface area). # 8.3 Nursing Mothers It is not known whether nateglinide is excreted in human milk. Nateglinide is excreted in rat milk. Offspring of rats exposed to 1,000 mg/kg nateglinide (approximately 27 times the human therapeutic exposure of 120 mg three times daily, based on body surface area) had lower body weight. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made as to whether nateglinide should be discontinued in nursing mothers, or if mothers should discontinue nursing. #### 8.4 Pediatric Use The safety and effectiveness of nateglinide have not been established in pediatric patients. #### 8.5 Geriatric Use 436 patients 65 years and older, and 80 patients 75 years and older were exposed to nateglinide in clinical studies. No differences were observed in safety or efficacy of nateglinide between patients age 65 and over, and those under age 65. However, greater sensitivity of some older individuals to nateglinide therapy cannot be ruled out. # 8.6 Renal Impairment No dosage adjustment is recommended in patients with mild to severe renal impairment [see Clinical # 8.7 Hepatic Impairment No dose adjustment is recommended for patients with mild hepatic impairment. Use of nateglinide in patients with moderate-to-severe hepatic impairment has not been studied and therefore, should be used with caution in these patients [see Clinical Pharmacology (12.3)]. #### **10 OVERDOSAGE** There have been no instances of overdose with nateglinide in clinical trials. However, an overdose may result in an exaggerated glucose-lowering effect with the development of hypoglycemic symptoms. Hypoglycemic symptoms without loss of consciousness or neurological findings should be treated with oral glucose and adjustments in dosage and/or meal patterns. Severe hypoglycemic reactions with coma, seizure, or other neurological symptoms should be treated with intravenous glucose. As nateglinide is highly protein bound, dialysis is not an efficient means of removing it from the blood. #### 11 DESCRIPTION Nateglinide Tablets, USP are an oral blood glucose-lowering drug of the glinide class. Nateglinide, (-)-N-[(trans-4-isopropylcyclohexane)carbonyl]-D-phenylalanine, is structurally unrelated to the oral sulfonylurea insulin secretagogues. The structural formula is as shown: Nateglinide is a white powder with a molecular weight of 317.43. It is freely soluble in methanol, ethanol, and chloroform, soluble in ether, sparingly soluble in acetonitrile and octanol, and practically insoluble in water. Nateglinide biconvex tablets contain 60 mg, or 120 mg, of nateglinide for oral administration. *Inactive Ingredients:* colloidal silicon dioxide, croscarmellose sodium, lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone, pregelatinized starch (starch 1500 [®]). Starch 1500 [®] is partially pregelatinized maize starch. The 60 mg also contains iron oxide red, polyethylene glycol, polyvinyl alcohol, talc, and titanium dioxide. In addition, the 120 mg contains FD&C Yellow #6/Sunset Yellow Aluminum Lake, iron oxide yellow. #### 12 CLINICAL PHARMACOLOGY #### 12.1 Mechanism of Action Nateglinide lowers blood glucose levels by stimulating insulin secretion from the pancreas. This action is dependent upon functioning beta-cells in the pancreatic islets. Nateglinide interacts with the ATP-sensitive potassium (K $^+$ ATP) channel on pancreatic beta-cells. The subsequent depolarization of the beta cell opens the calcium channel, producing calcium influx and insulin secretion. The extent of insulin release is glucose dependent and diminishes at low glucose levels. Nateglinide is highly tissue selective with low affinity for heart and skeletal muscle. # 12.2 Pharmacodynamics Nateglinide stimulates pancreatic insulin secretion within 20 minutes of oral administration. When nateglinide is dosed before meals, the peak rise in plasma insulin occurs approximately 1 hour after dosing and falls to baseline by 4 hours after dosing. #### 12.3 Pharmacokinetics In patients with Type 2 diabetes, multiple dose administration of nateglinide over the dosage range of 60 mg to 240 mg shows linear pharmacokinetics for both AUC and C $_{\rm max}$. In patients with Type 2 diabetes, there is no apparent accumulation of nateglinide upon multiple dosing of up to 240 mg three times daily for 7 days. #### **Absorption** Absolute bioavailability of nateglinide is approximately 73%. Plasma profiles are characterized by multiple plasma concentration peaks when nateglinide is administered under fasting conditions. This effect is diminished when nateglinide is taken prior to a meal. Following oral administration immediately prior to a meal, the mean peak plasma nateglinide concentrations (C_{max}) generally occur within 1 hour (T_{max}) after dosing. T_{max} is independent of dose. The pharmacokinetics of nateglinide are not affected by the composition of a meal (high protein, fat, or carbohydrate). However, peak plasma levels are significantly reduced when nateglinide is administered 10 minutes prior to a liquid meal as compared to solid meal. When given with or after meals, the extent of nateglinide absorption (AUC) remains unaffected. However, there is a delay in the rate of absorption characterized by a decrease in C $_{\rm max}$ and a delay in time to peak plasma concentration (T $_{\rm max}$). Nateglinide did not have any effect on gastric emptying in healthy subjects as assessed by acetaminophen testing. #### Distribution Following intravenous (IV) administration of nateglinide, the steady-state volume of distribution of nateglinide is estimated to be approximately 10 L in healthy subjects. Nateglinide is extensively bound (98%) to serum proteins, primarily serum albumin, and to a lesser extent α_1 acid glycoprotein. The extent of serum protein binding is independent of drug concentration over the test range of 0.1 to 10 mcg/mL. #### Elimination In healthy volunteers and patients with type 2 diabetes mellitus, nateglinide plasma concentrations declined with an average elimination half-life of approximately 1.5 hours. #### Metabolism *In vitro* drug metabolism studies indicate that nateglinide is predominantly metabolized by the cytochrome P450 isozyme CYP2C9 (70%) and to a lesser extent CYP3A4 (30%). The major routes of metabolism are hydroxylation followed by glucuronide conjugation. The major metabolites are less potent antidiabetic agents than nateglinide. The isoprene minor metabolite possesses potency similar to that of the parent compound nateglinide. #### Excretion Nateglinide and its metabolites are rapidly and completely eliminated following oral administration. Eighty-three percent of the 14 ^C-nateglinide was excreted in the urine with an additional 10% eliminated in the feces. Approximately 16% of the 14 ^C-nateglinide was excreted in the urine as parent compound. #### **Specific Populations** # Renal Impairment No pharmacokinetic data are available in subjects with mild renal impairment (CrCl 60 to 89 mL/min). Compared to healthy matched subjects, patients with type 2 diabetes mellitus and moderate and severe renal impairment (CrCl 15-50 mL/min) not on dialysis displayed similar apparent clearance, AUC, and C $_{\rm max}$. Patients with type 2 diabetes and renal failure on dialysis exhibited reduced overall drug exposure (C $_{\rm max}$ decreased by 49%; not statistically significant). However, hemodialysis patients also experienced reductions in plasma protein binding compared to the matched healthy volunteers. In a cohort of 8 patients with type 2 diabetes and end-stage renal disease (ESRD) (eGFR <15 mL/min/1.73 m²) M1 metabolite accumulation up to 1.2 ng/mL occurred with a dosage of 90 mg once daily for 1 to 3 months. In another cohort of 8 patients with type 2 diabetes on hemodialysis, M1 concentration decreased after a single session of hemodialysis. Although the hypoglycemic activity of the M1 metabolite is approximately 5 times lower than nateglinide, metabolite accumulation may increase the hypoglycemic effect of the administered dose. # Hepatic Impairment In patients with mild hepatic impairment, the mean increase in C $_{\rm max}$ and AUC of nateglinide were 37% and 30 % respectively, as compared to healthy matched control subjects. There is no data on pharmacokinetics of nateglinide in patients with moderate-to-severe hepatic impairment. #### Gender No clinically significant differences in nateglinide pharmacokinetics were observed between men and women. #### Race Results of a population pharmacokinetic analysis including subjects of Caucasian, Black, and other ethnic origins suggest that race has little influence on the pharmacokinetics of nateglinide. #### Age Age does not influence the pharmacokinetic properties of nateglinide. # **Drug Interactions:** #### In vitro assessment of drug interactions Nateglinide is a potential inhibitor of the CYP2C9 isoenzyme *in vivo* as indicated by its ability to inhibit the *in vitro* metabolism of tolbutamide. Inhibition of CYP3A4 metabolic reactions was not detected in *in vitro* experiments. In vitro displacement studies with highly protein-bound drugs such as furosemide, propranolol, captopril, nicardipine, pravastatin, glyburide, warfarin, phenytoin, acetylsalicylic acid, tolbutamide, and metformin showed no influence on the extent of nateglinide protein binding. Similarly, nateglinide had no influence on the serum protein binding of propranolol, glyburide, nicardipine, warfarin, phenytoin, acetylsalicylic acid, and tolbutamide *in vitro*. However, prudent evaluation of individual cases is warranted in the clinical setting. # In vivo assessment of drug interactions The effect of coadministered drugs on the pharmacokinetics of nateglinide and the effect of nateglinide on pharmacokinetics of coadministered drugs are shown in **Tables 3** and **4**. No clinically relevant change in pharmacokinetic parameters of either agent was reported when nateglinide was coadministered with glyburide, metformin, digoxin, warfarin, and diclofenac. # Table 3. Effect of Coadministered drugs on Pharmacokinetics of Nateglinide | Coadministered
Drug | Dosing regimen of coadministered drug | Dosing regimen of nateglinide | Change in C | Change in AUC | |------------------------|---------------------------------------|-------------------------------|--------------|---------------| | Glyburide | 10 mg once daily for 3 | 120 mg three times a | 8.78% ↓ | 3.53% ↓ | | | weeks | day, single dose | | | | Metformin | 500 mg three times a day | y120 mg three times a | AM: 7.14% ↑ | AM: 1.51% ↑ | | | for 3 weeks | day, single dose | PM: 11.4% ↓ | PM: 5.97% ↑ | | Digoxin | 1 mg, single dose | 120 mg three times a | AM: 2.17% ↓ | AM: 7.62% ↑ | | | | day, single dose | PM: 3.19% ↑ | PM: 2.22% ↑ | | Warfarin | 30 mg, single dose | 120 mg three times a day | 72.65% ↑ | 3.72% ↓ | | | | for 4 days | | | | Diclofenac | 75 mg, single dose | 120 mg twice daily, | AM: 13.23% ↓ | AM: 2.2% ↓ | | | | single dose | *PM: 3.76% ↑ | *PM: 7.5% ↑ | AM: after morning dose; PM: after evening dose; * after second dose; \uparrow : increase in the parameter; \downarrow : decrease in the parameter Table 4. Effect of Nateglinide on Pharmacokinetics of Coadministered Drugs | Coadministered
Drug | Dosing regimen of coadministered drug | Dosing regimen of nateglinide | Change in C | Change in AUC | |------------------------|---------------------------------------|--|--|--| | Glyburide | 10 mg once daily for 3 weeks | 120 mg three times a day, single dose | 3.18% ↓ | 7.34% ↓ | | Metformin | 500 mg three times a day for 3 weeks | y120 mg three times a day, single dose | AM: 10.7% ↑
PM: 0.40% ↑ | AM: 13.3% ↑
PM: 2.27% ↓ | | Digoxin | 1 mg, single dose | 120 mg three times a day, single dose | 5.41% ↓ | 6.58% ↑ | | Warfarin | 30 mg, single dose | 120 mg three times a day
for 4 days | R-warfarin:
1.03%↓
S-warfarin:
0.85%↓ | R-warfarin:
0.74% ↑
S-warfarin:
7.23% ↑ | | Diclofenac | 75 mg, single dose | 120 mg twice daily, single dose | 2.19% ↑ | 7.97% ↑ | AM: after morning dose; PM: after evening dose; SD: single dose; ↑: increase in the parameter; ↓: decrease in the parameter #### 13 NONCLINICAL TOXICOLOGY #### 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility <u>Carcinogenicity:</u> Nateglinide did not increase tumors in two year carcinogenicity studies conducted in mice and rats. Oral doses of Nateglinide up to 900 mg/kg in rats and 400 mg/kg in mice were tested, which produced exposures in rats approximately 30 to 40 times and in mice 10 to 30 times the human therapeutic exposure of nateglinide at a dose of 120 mg three times daily, based on AUC. <u>Mutagenesis:</u> Nateglinide was not genotoxic in the *in vitro* Ames test, mouse lymphoma assay, chromosome aberration assay or in the *in vivo* mouse micronucleus test. <u>Impairment of Fertility:</u> Fertility was unaffected by administration of nateglinide to rats at doses up to 600 mg/kg (approximately 16 times the human therapeutic exposure with a recommended nateglinide dose of 120 mg three times daily before meals). #### 14 CLINICAL STUDIES # 14.1 Monotherapy In a 24-week, double-blind, placebo-controlled study, patients with type 2 diabetes were randomized to receive either nateglinide (60 mg or 120 mg three times daily before meals) or placebo. Patients previously treated with antidiabetic medications were required to discontinue that medication for at least 2 months before randomization. At Week 24, treatment with nateglinide before meals resulted in statistically significant reductions in mean HbA $_{1C}$ and mean fasting plasma glucose (FPG) compared to placebo (see **Table 5**). The reductions in HbA $_{1C}$ and FPG were similar for patients naïve to, and those previously exposed to, antidiabetic medications. Table 5. Endpoint Results for a 24-week, Fixed Dose Study of Nateglinide Monotherapy | HbA _{1c} (%) | Placebo | Nateglinide | Nateglinide | |--------------------------------|---------|-------------------|-------------------| | | N=168 | 60 mg | 120 mg | | | | three times daily | three times daily | | | | before meals | before meals | | | | N=167 | N=168 | | Baseline (mean) | 8.0 | 7.9 | 8.1 | | Change from baseline (mean) | +0.2 | -0.3 | -0.5 | | Difference from placebo (mean) | N=172 | -0.5 * | -0.7 * | | FPG (mg/dL) | | N=171 | N=169 | | Baseline (mean) | 167.9 | 161.0 | 166.5 | | Change from baseline (mean) | +9.1 | +0.4 | -4.5 | | Difference from placebo (mean) | | -8.7 * | -13.6 * | ^{*} p-value ≤ 0.004 # 14.2 Monotherapy Compared to Glyburide In a 24-week, double-blind, active-controlled trial, patients with type 2 diabetes who had been on a sulfonylurea for 3 or more months and who had a baseline HbA $_{1C}$ greater than or equal to 6.5% were randomized to receive nateglinide (60 mg or 120 mg three times daily before meals) or glyburide 10 mg once daily. Patients randomized to nateglinide had statistically significant increases in mean HbA $_{1C}$ and mean FPG at endpoint compared to patients randomized to glyburide. Table 6. Endpoint Results for a 24-week Study of Nateglinide Monotherapy Compared to Glyburide | | Glyburide | Nateglinide | Nateglinide | |-----------------------------|------------|-------------------|-------------------| | | 10 mg | 60 mg | 120 mg | | | Once daily | three times daily | three times daily | | | | before meals | before meals | | HbA _{1c} (%) | N=183 | N=178 | N=179 | | Baseline (mean) | 7.8 | 8.0 | 7.9 | | Change from baseline (mean) | 0.3 | 1.3 | 1.1 | | Difference from glyburide | | 1.0 * | 0.9 * | | FPG (mmol/L) | N=184 | N=182 | N=180 | | Baseline (mean) | 9.44 | 9.67 | 9.61 | | Change from baseline (mean) | 0.19 | 3.06 | 2.84 | | Difference from glyburide | | 2.87 * | 2.66 * | ^{*} p-Value ≤ 0.001 # 14.3 Monotherapy and In Combination With Metformin In a 24-week, double-blind, active- and placebo-controlled study, patients with type 2 diabetes were randomized to receive either nateglinide alone (120 mg three times daily before meals), metformin alone (500 mg three times daily), a combination of nateglinide 120 mg (three times daily before meals) and metformin (500 mg three times daily), or placebo. Fifty-seven percent of patients were previously untreated with oral antidiabetic therapy. Patients previously treated with antidiabetic medications were required to discontinue medication for at least 2 months before randomization. At Week 24, statistically significant reductions in mean HbA $_{1C}$ and FPG were observed with metformin monotherapy compared to nateglinide monotherapy, and the combination of nateglinide and metformin compared to either nateglinide or metformin monotherapy (see **Table 7**). Compared to placebo, nateglinide monotherapy was associated with a statistically significant increase in mean body weight, while no significant change in body weight was observed with metformin monotherapy or combination of nateglinide and metformin therapy (see **Table 7**). Among the subset of patients previously treated with other antidiabetic agents, primarily glyburide, HbA $_{1C}$ in the nateglinide monotherapy group increased slightly from baseline, whereas HbA $_{1C}$ was reduced in the metformin monotherapy group (see **Table 7**). Table 7. Endpoint Results for a 24-week Study of Nateglinide Monotherapy and Combination with Metformin | HbA _{1c} (%) | Placebo | Nateglinide | Metformin | Nateglinide | |-----------------------------|---------|---------------------|--------------------------|------------------------| | All | N=160 | 120 mg | 500 mg three times daily | 120 mg
before meals | | | | before meals | | plus Metformin* | | | | N=171 | 11-1/2 | - | | D 1: () | 0.0 | | 0.4 | N=162 | | Baseline (mean) | 8.3 | 8.3 | 8.4 | 8.4 | | Change from baseline (mean) | +0.4 | -0.4 ^{†‡} | -0.8 [‡] | -1.5 | | Difference from placebo | N=98 | -0.8 § | -1.2 § | -1.9 § | | Naïve | | N=99 | N=98 | N=81 | | Baseline (mean) | 8.2 | 8.1 | 8.3 | 8.2 | | Change from baseline (mean) | +0.3 | -0.7 [‡] | -0.8 [‡] | -1.6 | | Difference from placebo | N=62 | -1.0 § | -1.1 § | -1.9 § | | Non-Naïve | | N=72 | N=74 | N=81 | | Baseline (mean) | 8.3 | 8.5 | 8.7 | 8.7 | | Change from baseline (mean) | +0.6 | +0.004 †‡ | -0.8 [‡] | -1.4 | | Difference from placebo | N=166 | -0.6 § | -1.4 § | -2.0 § | | FPG (mg/dL) | | N=173 | N=174 | N=167 | | All | | | | | | Baseline (mean) | 194.0 | 196.5 | 196.0 | 197.7 | | Change from baseline (mean) | +8.0 | -13.1 ^{†‡} | -30.0 ‡ | -44.9 | | Difference from placebo | | -21.1 § | -38.0 § | -52.9 § | ^{*} Metformin was administered three times daily In another 24-week, double-blind, placebo-controlled trial, patients with type 2 diabetes with HbA $_{1C}$ greater than or equal to 6.8% after treatment with metformin (greater than or equal to 1500 mg daily for at least 1 month) were first entered into a four week run-in period of metformin monotherapy (2000 mg daily) and then randomized to receive either nateglinide (60 mg or 120 mg three times daily before meals) or placebo as add-on to metformin. At the end of treatment, nateglinide 60 mg and 120 mg three times daily resulted in a statistically significantly greater reductions in HbA $_{1C}$ compared to placebo when added to metformin (-0.4% and -0.6% for nateglinide 60 mg and nateglinide 120 mg plus metformin, respectively). [†] p-value ≤0.03 vs. metformin [‡] p-value ≤ 0.05 vs. combination [§] p-value ≤0.05 vs. placebo Table 8. Endpoint Results for a 24-week Study of Nateglinide Monotherapy as Add-on to Metformin | | Placebo
+ metformin | Nateglinide
60 mg
+
metformin | Nateglinide
120 mg
+
metformin | |-----------------------------|------------------------|--|---| | HbA _{1c} (%) | N=150 | N=152 | N=154 | | Baseline (mean) | 8.2 | 8.0 | 8.2 | | Change from baseline (mean) | 0.01 | -0.4 | -0.6 | | Difference from metformin | | -0.4 * | -0.6 [†] | ^{*} p-value 0.003 vs. metformin # 14.4 Add-On Combination Therapy With Rosiglitazone A 24-week, double blind, multicenter, placebo-controlled trial was performed in patients with type 2 diabetes not adequately controlled on rosiglitazone 8 mg daily. The addition of nateglinide (120 mg three times per day with meals) was associated with statistically significantly greater reductions in HbA $_{1C}$ compared to placebo as add-on to rosiglitazone. The mean change in weight from baseline was +3 kg for patients treated with nateglinide compared to +1 kg for patients treated with placebo when added to rosiglitazone. Table 9. Endpoint Results for a 24-week Study of the Effect of Adding Nateglinide or Placebo to Rosiglitazone | | Placebo
+ rosiglitazone 8 mg
once daily | Nateglinide
120 mg before meals +
rosiglitazone 8 mg once daily | |--------------------------------------|---|---| | HbA _{1c} (%) | N=191 | N = 194 | | Baseline (mean) | 8.4 | 8.3 | | Change from baseline (mean) | 0.03 | -0.7 | | Difference from rosiglitazone (mean) | | -0.7 * | ^{*} p-value < 0.0001 # 14.5 Add-On Combination Therapy With Glyburide In a 12-week study of patients with type 2 diabetes inadequately controlled on glyburide 10 mg once daily, the addition of nateglinide (60 mg or 120 mg three times daily before meals) did not produce any additional benefit. Table 10. Endpoint Results for a 12-week Study of the Effect of Adding Nateglinide or Placebo to Glyburide | | | | Nateglinide | |----------------------------------|-----------------|----------------------|----------------------| | | | Nateglinide | 120 mg before meals | | | Placebo + | 60 mg before meals + | + | | | glyburide 10 mg | glyburide 10 mg once | glyburide 10 mg once | | | once daily | daily | daily | | HbA _{1c} (%) | N = 58 | N=55 | N=54 | | Baseline (mean) | 8.7 | 8.7 | 8.7 | | Change from baseline (mean) | 0.3 | 0.2 | -0.02 | | Difference from glyburide (mean) | | -0.1 * | -0.3 [†] | ^{*} p-value 0.6959 [†] p-value < 0.001 vs. metformin #### 16 HOW SUPPLIED #### **How Supplied** Nateglinide Tablets, USP are supplied in the following package and dose strength forms: #### 60 mg Pink color coated, round biconvex, beveled edge tablet debossed with "P 984" on one side and plain on the other side. Unit dose packages of 30 (3x10) NDC 68084-458-21 #### 120 mg Orange color coated, oval shaped biconvex, tablet debossed with "P 985" on one side and plain on the other side. Unit dose packages of 30 (3x10) NDC 68084-459-21 # Storage and Handling Store at 25°C (77°F); excursions permitted to 15°C to 30°C (59°F to 86°F). [See USP Controlled Room Temperature] **FOR YOUR PROTECTION:** Do not use if blister is torn or broken. #### 17 PATIENT COUNSELING INFORMATION #### Administration Instruct patients to take nateglinide 1 to 30 minutes before meals. Instruct patients that skip meals to skip their dose of nateglinide [see Dosage and Administration (2)]. # Hypoglycemia Inform patients that nateglinide can cause hypoglycemia and instruct patients and their caregivers on self-management procedures including glucose monitoring and management of hypoglycemia. Inform patients that their ability to concentrate and react may be impaired as a result of hypoglycemia. In patients at higher risk for hypoglycemia and patients who have reduced symptomatic awareness of hypoglycemia, increased frequency of blood glucose monitoring is recommended [see Warnings and Precautions (5.1)]. #### **Drug Interactions** Discuss potential drug interactions with patients and inform them of potential drug-drug interactions with nateglinide. #### PACKAGING INFORMATION American Health Packaging unit dose blisters (see How Supplied section) contain drug product from Par Pharmaceutical as follows: (60 mg / 30 UD) NDC 68084-458-21 packaged from NDC 49884-984 (120 mg / 30 UD) NDC 68084-459-21 packaged from NDC 49884-985 Distributed by: #### **American Health Packaging** Columbus, OH 43217 8245821/0820 Package/Label Display Panel – Carton – 60 mg NDC 68084- 458-21 #### Nateglinide Tablets, USP 60 mg **30 Tablets (3 x 10)** #### **Each Tablet Contains:** Nateglinide, USP......60 mg **Usual Dosage:** See package insert for full prescribing information. **Store** at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Keep this and all drugs out of reach of children. **FOR YOUR PROTECTION:** Do not use if blister is torn or broken. The drug product contained in this package is from NDC # 49884-984, Par Pharmaceutical. Packaged and Distributed by: American Health Packaging Columbus, Ohio 43217 045821 0245821/1018 # Package/Label Display Panel - Blister - 60 mg Nateglinide Tablet, USP 60 mg Package/Label Display Panel - Carton - 120 mg NDC 68084-459-21 # Nateglinide Tablets, USP 120 mg **30 Tablets (3 x 10) 00000 00000000 Rx Only** #### **Each Tablet Contains:** Nateglinide, USP......120 mg **Usual Dosage:** See package insert for full prescribing information. **Store** at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Keep this and all drugs out of reach of children. **FOR YOUR PROTECTION:** Do not use if blister is torn or broken. The drug product contained in this package is from NDC # 49884-985, Par Pharmaceutical. Distributed by: American Health Packaging Columbus, Ohio 43217 045921 0245921/0119OS # Package/Label Display Panel – Blister – 120 mg Nateglinide Tablet, USP 120 mg # NATEGLINIDE nateglinide tablet, coated Product Information Product Type HUMAN PRESCRIPTION DRUG Item Code (Source) NDC:68084-458(NDC:49884-984) Route of Administration ORAL Active Ingredient/Active Moiety Ingredient Name Basis of Strength Strength | Inactive Ingredients | | |---|----------| | Ingredient Name | Strength | | SILICON DIO XIDE (UNII: ETJ7Z6XBU4) | | | CROSCARMELLOSE SODIUM (UNII: M28 OL 1HH48) | | | LACTO SE MONO HYDRATE (UNII: EWQ57Q8I5X) | | | MAGNESIUM STEARATE (UNII: 70097M6I30) | | | MICRO CRYSTALLINE CELLULO SE (UNII: OP1R32D61U) | | | PO VIDO NE, UNSPECIFIED (UNII: FZ989GH94E) | | | STARCH, CORN (UNII: O8232NY3SJ) | | | FERRIC OXIDE RED (UNII: 1K09F3G675) | | | POLYETHYLENE GLYCOL, UNSPECIFIED (UNII: 3WJQ0SDW1A) | | | POLYVINYL ALCOHOL, UNSPECIFIED (UNII: 532B59J990) | | | TALC (UNII: 7SEV7J4R1U) | | | TITANIUM DIO XIDE (UNII: 15FIX9 V2JP) | | | Product Characteristics | | | | | |-------------------------|-------|--------------|----------|--| | Color | pink | Score | no score | | | Shape | ROUND | Size | 1mm | | | Flavor | | Imprint Code | P;984 | | | Contains | | | | | | I | Packaging | | | | | | | |---|------------------|--|-----------------------------|---------------------------|--|--|--| | # | Item Code | Package Description | Marketing Start Date | Marketing End Date | | | | | 1 | NDC:68084-458-21 | 30 in 1 BOX, UNIT-DOSE | 0 1/0 5/20 11 | | | | | | 1 | NDC:68084-458-11 | 1 in 1 BLISTER PACK; Type 0: Not a Combination Product | | | | | | | | | | | | | | | | Marketing Information | | | | | | |-----------------------|--------------------|--|----------------------|--------------------|--| | l | Marketing Category | Application Number or Monograph Citation | Marketing Start Date | Marketing End Date | | | ı | ANDA | ANDA077463 | 0 1/0 5/20 11 | | | | ı | | | | | | # NATEGLINIDE nateglinide tablet, coated | Product Information | | | | | |-------------------------|-------------------------|--------------------|------------------------------|--| | Product Type | HUMAN PRESCRIPTION DRUG | Item Code (Source) | NDC:68084-459(NDC:49884-985) | | | Route of Administration | ORAL | | | | | Active Ingredient/Active Moiety | | | | | |--|-------------------|----------|--|--| | Ingredient Name | Basis of Strength | Strength | | | | NATEGLINIDE (UNII: 41X3PWK4O2) (NATEGLINIDE - UNII:41X3PWK4O2) | NATEGLINIDE | 120 mg | | | # Inactive Ingredients | Ingredient Name | Strength | | | | |---|----------|--|--|--| | SILICON DIO XIDE (UNII: ETJ7Z6 XBU4) | | | | | | CROSCARMELLOSE SODIUM (UNII: M28 OL1HH48) | | | | | | LACTO SE MO NO HYDRATE (UNII: EWQ57Q8I5X) | | | | | | MAGNESIUM STEARATE (UNII: 70097M6I30) | | | | | | MICRO CRYSTALLINE CELLULO SE (UNII: OP1R32D61U) | | | | | | PO VIDONE, UNSPECIFIED (UNII: FZ989GH94E) | | | | | | STARCH, CORN (UNII: O8232NY3SJ) | | | | | | FD&C YELLOW NO. 6 (UNII: H77VEI93A8) | | | | | | FERRIC OXIDE YELLOW (UNII: EX438O2MRT) | | | | | | Product Characteristics | | | | | |-------------------------|--------|--------------|----------|--| | Color | orange | Score | no score | | | Shape | OVAL | Size | 6mm | | | Flavor | | Imprint Code | P;985 | | | Contains | | | | | | Packaging | | | | | | | |-----------|------------------|---|-----------------------------|---------------------------|--|--| | # | Item Code | Package Description | Marketing Start Date | Marketing End Date | | | | 1 | NDC:68084-459-21 | 30 in 1 BOX, UNIT-DOSE | 0 1/0 5/20 11 | | | | | 1 | NDC:68084-459-11 | $1\ \text{in}\ 1\ \text{BLISTER}$ PACK; Type $\ 0\ :$ Not a Combination Product | | | | | | | | | | | | | # Labeler - American Health Packaging (929561009) | Establishment | | | | | |---------------------------|---------|-----------|------------------------------|--| | Name | Address | ID/FEI | Business Operations | | | American Health Packaging | | 929561009 | repack(68084-458, 68084-459) | | Revised: 11/2020 American Health Packaging